The generator matrix

 1  0  0  0  0  1  1  1  1 X^2  1  X  1  X  0  X  1  1  0 X^2+X  1  0  0 X^2 X^2+X  X  1  1  1
 0  1  0  0  0  0  X  1 X^2+1  1  1  X  X  1  1  1 X^2+X+1  X  1 X^2+X X^2+1  X  1  0 X^2  1 X^2 X^2+X+1 X^2
 0  0  1  0  0  0 X+1  X X^2+1 X^2+X+1  0  1 X^2+X+1 X^2 X^2 X+1 X^2+1 X^2+X+1 X^2+1 X^2+X X^2+X  1 X+1  X  1 X^2+1 X^2+X X^2+X X+1
 0  0  0  1  0  1  1 X+1 X^2  1  0 X^2+1  X X^2+1 X^2+X+1 X^2+X X+1  0 X^2+1  1 X^2+X+1 X^2+X  X  1 X^2+X+1  1 X^2 X^2 X^2
 0  0  0  0  1  1 X^2  0  X  X  1 X^2+1  1  0 X^2+1 X^2+X+1 X+1  X X^2+X+1 X^2+X+1 X^2+1 X^2+X+1  0 X^2 X^2+X X+1 X^2+X+1 X^2+1  X
 0  0  0  0  0  X  0  0  0  0 X^2  0 X^2 X^2  X  X X^2+X X^2+X X^2 X^2+X X^2  0 X^2+X  X  X  X  X X^2+X X^2+X

generates a code of length 29 over Z2[X]/(X^3) who�s minimum homogenous weight is 21.

Homogenous weight enumerator: w(x)=1x^0+244x^21+716x^22+1824x^23+3702x^24+6274x^25+10050x^26+14444x^27+18065x^28+19762x^29+18520x^30+14848x^31+10442x^32+6154x^33+3290x^34+1692x^35+647x^36+266x^37+96x^38+24x^39+7x^40+4x^41

The gray image is a linear code over GF(2) with n=116, k=17 and d=42.
This code was found by Heurico 1.13 in 65.9 seconds.